lktg_polynoms/1.4.tex
dragonmuffin 28d1d38b71 add 1.4
2024-08-04 20:52:33 +03:00

23 lines
1.2 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[english, a4paper]{article}
%\usepackage[utf8]{inputenc}
\usepackage{pgfpages}
\usepackage{pgfplots}
\usepackage{graphicx}
\usepackage{tabularx}
\usepackage{amsfonts}
\usepackage[english,russian]{babel}
\author{Мизев Андрей}
\title{Задача 1.4 проекта <<Уклонения многочленов и критические значения>>}
\newcolumntype{b}{X}
\newcolumntype{s}{>{\hsize=.01\hsize}X}
\pagestyle{empty}
\begin{document}
\maketitle
Для начала, опустим все точки на Ox, где пробегает точка M. Любое расстояние не увеличилось, значит если доказать задачу для точек на прямой, будет доказан и общий случай.\\
Дальше, поймём что функция, дающая произведение длин от координаты, имеет вид $(x-x_1)(x-x_2)\ldots(x-x_n)$, то есть это унитарный многочлен. Назовём его $P$.
По задаче 2.2, $\max\limits_{[a:b]} P(x)\ge \frac{(b-a)^n}{2^{2n-1}}=2(\frac{b-a}{4})=2(\frac{h}{2})$
\end{document}