lktg_polynoms/2.4a.tex

20 lines
2.4 KiB
TeX
Raw Normal View History

2024-08-05 16:54:53 +00:00
\documentclass[english, a4paper]{article}
%\usepackage[utf8]{inputenc}
\usepackage{pgfpages}
\usepackage{pgfplots}
\usepackage{graphicx}
\usepackage{tabularx}
\usepackage{amsfonts}
\usepackage[english,russian]{babel}
\author{Мизев Андрей}
2024-08-05 17:48:39 +00:00
\title{Задача 2.4А проекта <<Уклонения многочленов и критические значения>>}
2024-08-05 16:54:53 +00:00
\newcounter{picnum}
\newcommand\showpicnum{\stepcounter{picnum}\thepicnum}
\begin{document}
\maketitle
Рассмотрим матрицу коэффициентов $a$. Тогда, чтобы получить значение при заданных x,y можно посчитать каждую строку коэффициентами многочлена, подставить аргумент, потом получившиеся значения посчитать коэффициентами другого многочлена и подставить туда другой аргумент.\\
Тогда, давайте рассмотрим многочлен, соответствующий последней строке. Так как старший коэффициент $2^n2^m$, то максимальное значение на отрезке хотя бы $2^n$. Тогда, возьмём это максимальное значение как коэффициент в этой строке. Тогда, раз многочлен с коэффициентами из строк имеет старший коэффициент хотя бы $2^n$, то максимальное значение этого многочлена на отрезке хотя бы 1, чтд.\\
2024-08-05 17:48:39 +00:00
Заметим что если максимум многочлена последней строки это как раз $2^n$, то это домноженный на $2^n$ многочлен Чебышева, тогда максимальное значение он принимает $n+1$ раз. В каждом случае мы должны получать многочлен Чебышева из коэффициентов строк, так что для каждого из многочленов строк мы знаем $n+1$ их значение, что полностью из задаёт, то есть таблица может принимать только один вид, а вид $T_m(x)T_n(x)$ подходит.
2024-08-08 12:04:27 +00:00
\end{document}