20 lines
2.4 KiB
TeX
20 lines
2.4 KiB
TeX
\documentclass[english, a4paper]{article}
|
||
%\usepackage[utf8]{inputenc}
|
||
\usepackage{pgfpages}
|
||
\usepackage{pgfplots}
|
||
\usepackage{graphicx}
|
||
\usepackage{tabularx}
|
||
\usepackage{amsfonts}
|
||
\usepackage[english,russian]{babel}
|
||
\author{Мизев Андрей}
|
||
\title{Задача 2.4А проекта <<Уклонения многочленов и критические значения>>}
|
||
|
||
\newcounter{picnum}
|
||
\newcommand\showpicnum{\stepcounter{picnum}\thepicnum}
|
||
|
||
\begin{document}
|
||
\maketitle
|
||
Рассмотрим матрицу коэффициентов $a$. Тогда, чтобы получить значение при заданных x,y можно посчитать каждую строку коэффициентами многочлена, подставить аргумент, потом получившиеся значения посчитать коэффициентами другого многочлена и подставить туда другой аргумент.\\
|
||
Тогда, давайте рассмотрим многочлен, соответствующий последней строке. Так как старший коэффициент $2^n2^m$, то максимальное значение на отрезке хотя бы $2^n$. Тогда, возьмём это максимальное значение как коэффициент в этой строке. Тогда, раз многочлен с коэффициентами из строк имеет старший коэффициент хотя бы $2^n$, то максимальное значение этого многочлена на отрезке хотя бы 1, чтд.\\
|
||
Заметим что если максимум многочлена последней строки это как раз $2^n$, то это домноженный на $2^n$ многочлен Чебышева, тогда максимальное значение он принимает $n+1$ раз. В каждом случае мы должны получать многочлен Чебышева из коэффициентов строк, так что для каждого из многочленов строк мы знаем $n+1$ их значение, что полностью из задаёт, то есть таблица может принимать только один вид, а вид $T_m(x)T_n(x)$ подходит.
|
||
\end{document} |