From 575e1a1a969c8a59b2389794d8d39a54de97c40f Mon Sep 17 00:00:00 2001 From: dragonmuffin Date: Thu, 8 Aug 2024 12:01:34 +0300 Subject: [PATCH] adding 3.1;correcting 2.4a --- 2.4a.tex | 2 +- 3.1.tex | 21 +++++++++++++++++++++ 2 files changed, 22 insertions(+), 1 deletion(-) create mode 100644 3.1.tex diff --git a/2.4a.tex b/2.4a.tex index 72226b6..e1a8fe4 100644 --- a/2.4a.tex +++ b/2.4a.tex @@ -17,4 +17,4 @@ Рассмотрим матрицу коэффициентов $a$. Тогда, чтобы получить значение при заданных x,y можно посчитать каждую строку коэффициентами многочлена, подставить аргумент, потом получившиеся значения посчитать коэффициентами другого многочлена и подставить туда другой аргумент.\\ Тогда, давайте рассмотрим многочлен, соответствующий последней строке. Так как старший коэффициент $2^n2^m$, то максимальное значение на отрезке хотя бы $2^n$. Тогда, возьмём это максимальное значение как коэффициент в этой строке. Тогда, раз многочлен с коэффициентами из строк имеет старший коэффициент хотя бы $2^n$, то максимальное значение этого многочлена на отрезке хотя бы 1, чтд.\\ Заметим что если максимум многочлена последней строки это как раз $2^n$, то это домноженный на $2^n$ многочлен Чебышева, тогда максимальное значение он принимает $n+1$ раз. В каждом случае мы должны получать многочлен Чебышева из коэффициентов строк, так что для каждого из многочленов строк мы знаем $n+1$ их значение, что полностью из задаёт, то есть таблица может принимать только один вид, а вид $T_m(x)T_n(x)$ подходит. -\end{document} \ No newline at end of file +\end{document} diff --git a/3.1.tex b/3.1.tex new file mode 100644 index 0000000..b869ade --- /dev/null +++ b/3.1.tex @@ -0,0 +1,21 @@ +\documentclass[english, a4paper]{article} +%\usepackage[utf8]{inputenc} +\usepackage{pgfpages} +\usepackage{pgfplots} +\usepackage{graphicx} +\usepackage{tabularx} +\usepackage{amsfonts} +\usepackage[english,russian]{babel} +\author{Мизев Андрей} +\title{Задача 3.1 проекта <<Уклонения многочленов и критические значения>>} + +\newcounter{picnum} +\newcommand\showpicnum{\stepcounter{picnum}\thepicnum} + +\begin{document} + \maketitle + Раз многочлен малоуклоняющийся, то старший коэффициент не превосходит соответствующего коэффициента в многочлене Чебышева: $|a|\le 2$. Пусть $F(x)=ax^2+bx+c$. Раз $|F(0)|\le 1$, то $|c|\le 1$. Раз $|F(1)|\le 1$, то $|a+b+c|\le 1$. Раз $|F(-1)|\le 1$, то $|a-b+c|\le 1$, тогда $|a+c|+|b|\le 1$.\\ + Докажем следующее: при выполнении $|a|\le 2;|c|\le 1;|a+c|+|b|\le 1$ выполняется $a^2+b^2+c^2\le 5$. Для начала, заметим что если $|a|\ne 2$ и $|c|\ne 1$, то можно увеличить большее и уменьшить меньшее до достижения одним из них границы, тогда $|a+c|$ не изменится, так что ни одно неравенство не нарушится, а сумма квадратов увеличится (я считаю то, что при сохранении суммы и увелечении разности сумма квадратов увеличивается, известным фактом). Тогда, разберём 2 случая:\\ + При $a=2$ (случай $a=-2$ аналогичен), $|c|=1$ (т.к. $|a+c|\le1$), тогда $|b|=0$, тогда $a^2+b^2+c^2=5$.\\ + При $c=1$ (случай $c=-1$ аналогичен), $|a|+|b|\le 2$ (раз $|a|$ отличается от $|a+c|$ не более чем на $|c|$). Тогда, $a^2+b^2\le 4$ (пользуюсь тем же известным, как мне кажется, фактом), тогда $a^2+b^2+c^2\le 5$. +\end{document}