lktg_polynoms/2.2.tex

22 lines
2.8 KiB
TeX
Raw Normal View History

2024-08-05 16:54:53 +00:00
\documentclass[english, a4paper]{article}
%\usepackage[utf8]{inputenc}
\usepackage{pgfpages}
\usepackage{pgfplots}
\usepackage{graphicx}
\usepackage{tabularx}
\usepackage{amsfonts}
\usepackage[english,russian]{babel}
\author{Мизев Андрей}
\title{Задача 2.2 проекта <<Уклонения многочленов и критические значения>>}
\newcounter{picnum}
\newcommand\showpicnum{\stepcounter{picnum}\thepicnum}
\begin{document}
\maketitle
Переместим график $P(x)$ вправо или влево так, чтобы в 0 оказалось его место, которое было посередине между $a$ и $b$. Получится график $P(x+\frac{a+b}{2})$. Затем сузим или расширим его так, чтобы то, что в $P(x)$ было между $a$ и $b$ стало между $-1$ и $1$. Будет график $P(\frac{(b-a)(2x+a+b)}{4})$. Вместе с этим изменим отрезок, на котором берём максимум. В силу производимых изменений, $\max\limits_{x\in [a:b]} |P(x)|=\max\limits_{x\in [-1:1]}|P(\frac{(b-a)(2x+a+b)}{4})|$. Тогда, перейдём к равносильному неравенству $\max\limits_{x\in [-1:1]}|P(\frac{(b-a)(2x+a+b)}{4})|\ge \frac{|a_d|}{2^{2d-1}}(b-a)^d$. Если представить $P(\frac{(b-a)(2x+a+b)}{4})$ как новый многочлен, его старший коэффициент будет $\frac{(b-a)^d}{a_d*2^d}$. Тогда получим унитарный многочлен $Q(x)=P(\frac{2x-a-b}{a+b})*\frac{a_d2^d}{(b-a)^d}$ и равносильное неравенство $\max\limits_{x\in [-1:1]}|Q(x)|\ge \frac{1}{2^{d-1}}$, что доказано в теории к части. Заметим что такой многочлен Q может быть только один, тогда, идя обратными преобразованиями мы получим что многочлен P такой только один и как раз имеет вид, указанный в задаче.\\
%$P(x)=\frac{a_d(b-a)^d}{2^{2d-1}}*T(\frac{2x-a-b}{b-a})=
%\frac{a_d(b-a)^d}{2^{2d}}*\sum\limits_{k=0}^{\lfloor d/2\rfloor}\frac{d}{d-2k}*C_{d-2k}^{2k}*(\frac{4x-2a-2b}{b-a})^{d-4k}-\frac{d}{d-2k-1}*C_{d-2k-1}^{2k+1}*(\frac{4x-2a-2b}{b-a})^{d-4k-2}=\\
%\frac{a_d(b-a)^d}{2^{2d}}*\sum\limits_{k=0}^{\lfloor d/2\rfloor}(\frac{4x-2a-2b}{b-a})^{d-4k-2}*(\frac{d}{d-2k}*C_{d-2k}^{2k}*(\frac{4x-2a-2b}{b-a})^{2}-\frac{d}{d-2k-1}*C_{d-2k-1}^{2k+1})=\\
%\frac{a_d}{2^{2d}}*\sum\limits_{k=0}^{\lfloor d/2\rfloor}(x-\frac{a+b}{2})^{d-4k-2}\frac{(b-a)^d}{(b-a)^{d-4k-2}}*(\frac{d}{d-2k}*C_{d}^{2k}*\frac{(d-2k)!^2}{d!(d-4k)!}*(\frac{4x-2a-2b}{b-a})^{2}-\frac{d}{d-2k-1}*C_{d}^{2k+1}*\frac{(d-4k-2)!}{d!})$
\end{document}